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Iris Recognition: An Emerging 

Biometric Technology 

RICHARD P. WILDES, MEMBER, IEEE 

This paper examines automated iris recognition as a biometri• 
cally based technology for personal identification and verification. 
The motivation for this endeavor stems from the observation that 
the human iris provides a particularly interesting structure on 
which to base a technology for noninvasive biometric assessment. 
In particular, the biomedical literature suggests that irises are as 
distinct as fingerprints or patterns of retinal blood vessels. Further, 
since the iris is an overt body, its appearance is amenable to remote 
examination with the aid of a machine vision system. The body 
of this paper details issues in the design and operation of such 
systems. For the sake of illustration, extant systems are described 
in some amount of detail. 

Keywords-Biometrics, iris recognition, machine vision, object 
recognition, pattern recognition. 

I. INTRODUCTION

A. Motivation

Technologies that exploit biometrics have the potential
for application to the identification and verification of 
individuals for controlling access to secured areas or ma
terials.1 A wide variety of biometrics have been marshaled
in support of this challenge. Resulting systems include 
those based on automated recognition of retinal vascula
rure, fingerprints, hand shape, handwritten signature, and 
mice [24], [40]. Provided a highly cooperative operator, 
these approaches have the potential to provide acceptable 
performance. Unfortunately, from the human factors point 
of view, these methods are highly invasive: Typically, the 
operator is required to make physical contact with a sensing 

device or otherwise take some special action (e.g., recite 
a specific phonemic sequence). Similarly, there is little 
potential for covert evaluation. One possible alternative to 
these methods that has the potential to be less invasive 
is automated face recognition. However, while automated 
face recognition is a topic of active research, the inherent 
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difficulty of the problem might prevent widely applicable 
technologies from appearing in the near term [9], [45]. 
Automated iris recognition is yet another alternative for 
noninvasive verification and identification of people. Inter
estingly, the spatial patterns that are apparent in the human 
iris are highly distinctive to an individual [I], [34] (see, 
e.g., Fig. l ). Like the face, the iris is an overt body that is 
available for remote (i.e., noninvasive) assessment. Unlike 
the human face, however, the variability in appearance 
of any one iris might be well enough constrained to 
make possible an automated recognition system based on 
currently available machine vision technologies. 

B. Background

The word iris dates from classical times (ipic,, a rainbow).
As applied to the colored portion of the exterior eye, iris 
seems to date to the sixteenth century and was taken to 
denote this structure's variegated appearance [50]. More 
technically, the iris is part of the uveal, or middle, coat of 
the eye. It is a thin diaphragm stretching across the anterior 
portion of the eye and supported by the lens (see Fig. 2). 
This support gives it the shape of a truncated cone in three 
dimensions. At its base, the iris is attached to the eye· s 
cilliary body. At the opposite end, it opens into the pupil, 
typically slightly to the nasal side and below center. The 
cornea lies in front of the iris and provides a transparent 
protective covering. 

To appreciate the richness of the iris as a pattern for 
recognition, it is useful to consider its structure in a bit 
more detail. The iris is composed of several layers. Its 
posterior surface consists of heavily pigmented epithelial 

cells that make it light tight (i.e., impenetrable by light). 
Anterior to this layer are two cooperative muscles for 

controlling the pupil. Next is the stromal layer, consisting 

of collagenous connective tissue in arch-like processes. 
Coursing through this layer are radially arranged corkscrew

like blood vessels. The most anterior layer is the anterior 
border layer, differing from the stroma in being more 
densely packed, especially with individual pigment cells 
called chromataphores. The visual appearance of the iris 
is a direct result of its multilayered structure. The an
terior surface of the iris is seen to be divided into a 
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Fig. I. The distinctiveness of the human iris. The two panels 
show images of the left iris of two individuals. Even to casual 
inspection. the imaged patterns in the two irises are markedly 
different. 

central pupillary zone and a surrounding cilliary zone. 
The border of these two areas is termed the collarette; 

it appears as a zigzag circumferential ridge resulting as 

the anterior border layer ends abruptly near the pupil. The 

cilliary zone contains many interlacing ridges resulting from 

stromal support. Contractile lines here can vary with the 

state of the pupil. Additional meridional striations result 
from the radiating vasculature. Other assoned variations in 

appearance owe to crypts (irregular atrophy of the border 
layer), nevi (small elevations of the border layer), and 
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freckles (local collections of chromataphores). In contrast, 
the pupillary zone can be relatively flat. However, it often 

shows radiating spoke-like processes and a pigment frill 

where the posterior layer's heavily pigmented tissue shows 
at the pupil boundary. Last, iris color results from the 

differential absorption of light impinging on the pigmented 
cells in the anterior border layer. When there is little 
pigmentation in the anterior border layer, light reflects back 
from the posterior epithelium and is scattered as it passes 
through the stroma to yield a blue appearance. Progressive 
levels of anterior pigmentation lead to darker colored irises. 
Additional details of iris structure can be found in the 
biomedical literature (e.g., [I], (16]). 

Claims that the structure of the iris is unique to an 
individual and is stable with age come from two main 
sources. The first source of evidence is clinical obser
vations. During the course of examining large numbers 
of eyes, ophthalmologists (20] and anatomists [l] have 
noted that the detailed pattern of an iris, even the left 
and right iris of a single person, seems to be highly 
distinctive. Funher, in cases with repeated observations, 
the patterns seem to vary little, at least past childhood. 
The second source of evidence is developmental biology 
[35], [38]. There. one finds that while the general structure 
of the iris is genetically determined, the particulars of its 
minutiae are critically dependent on circumstances (e.g., the 
initial conditions in the embryonic precursor to the iris). 
Therefore, they are highly unlikely to be replicated via the 
natural course of events. Rarely, the developmental process 
goes awry, yielding only a rudimentary iris (aniridia) or 
a marked displacement (corectopia) or shape distortion 
(colobloma) of the pupil [35], [42]. Developmental evi
dence also bears on issues of stability with age. Cenain 
parts of the iris (e.g., the vasculature) are largely in place at 
birth, whereas others (e.g., the musculature) mature around 
two years of age [1], [35]. Of particular significance for 
the purposes of recognition is the fact that pigmentation 
patterning continues until adolescence [I], (4 3], (5 1]. Also, 
the average pupil size (for an individual) increases slightly 
until adolescence [I]. Following adolescence, the healthy 
iris varies little for the rest of a person's life, although 
slight depigmentation and shrinking of the average pupillary 
opening are standard with advanced age [I], [42]. Various 
diseases of the eye can drastically alter the appearance of 
the iris (4 1], [42]. It also appears that intensive exposure to 

cenain environmental contaminants (e.g., metals) can alter 
iris pigmentation [4 I], [42]. However, these conditions are 
rare. Claims that the iris changes with more general states 
of health (iridology) have been discredited [4], [56]. On 
the whole, these lines of evidence suggest that the iris is 
highly distinctive and, following childhood, typically stable. 
Nevertheless, it is imponant to note that large-scale studies 
that specifically address the distinctiveness and stability of 
the iris, especially as a biometric, have yet to be performed. 

Another interesting aspect of the iris from a biometric 
point of view has to do with its moment-to-moment dy
namics. Due to the complex interplay of the iris' muscles, 
the diameter of the pupil is in a constant state of small 
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Fig. 2. Anatomy of the human iris. (a) The structure of the iris seen in a transverse section. (b) 
The structure of the iris seen in a frontal sector. The visual appearance of the human iris derives 
from its anatomical structure. 

oscillation [I], [16]. Potentially, this movement could be 

monitored to make sure that a live specimen is being 

evaluated. Further, since the iris reacts very quickly to 

changes in impinging illumination (e.g., on the order of 

hundreds of milliseconds for contraction), monitoring the 

reaction to a controlled illuminant could provide similar 

evidence. In contrast, upon morbidity, the iris contracts and 

hardens, facts that may have ramifications for its use in 

forensics. 

Apparently, the first use of iris recognition as a basis for 

personal identification goes back to efforts to distinguish 

inmates in the Parisian penal system by visually inspecting 

their irises, especially the patterning of color [5]. More 

recently, the concept of automated iris recognition was 
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proposed by Flom and Safir [20] It does not appear. 

however, that this team ever developed and tested a workinf 

system. Early work toward actually realizing a system 

for automated iris recognition was carried out at Los 

Alamos National Laboratories, CA [32]. Subsequently, two 

research groups developed and documented prototype iris

recognition systems [14], [52]. These systems have shown 

promising perfonnance on diverse data bases of hundreds of 

iris images. Other research into automated iris recognition 

has been carried out in North America [48] and Europe 

[37]; however, these efforts have not been well documented 

to date. More anecdotally, a notion akin to automated 

iris recognition came to popular attention in the James 

Bond film Never Say Never Again, in which characters are
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Fig. 3. Schematic diagram of iris recognition. Given a subject to be evaluated (left of upper row) 
relative to a data base of iris records (left of lower row), recognition proceeds in three steps. The 
first step is image acquisition, which yields an image of the subject's eye region. The second step is 
iris localization, which delimits the iris from the rest of the acquired image. The third step is pattern 
matching. which produces a decision, "D." For verification, the decision is a yes/no response relative 
to a particular prespecified data base entry; for identification, the decision is a record (possibly null) 
that has been indexed relative to a larger set of entries. 

depicted having images of their eye captured for the purpose 
of identification [22]. 

C. Outline

This paper subdivides into four major sections. This first
section has served to introduce the notion of automated iris 
recognition. Section II describes the major technical issues 

that must be confronted in the design of an iris-recognition 
system. Illustrative solutions are provided by reference to 
the two systems that have been well documented in the 
open literature [14], [52]. Section III overviews the status 

of these systems, including test results. Last, Section IV 
provides concluding observations. 

II. TECHNICAL ISSUES 

Conceptually, issues in the design and implementation 
of a system for automated iris recognition can be subdi
vided into three parts (see Fig. 3). The first set of issues 
surrounds image acquisition. The second set is concerned 
with localizing the iris per se from a captured image. The 
third part is concerned with matching an extracted iris 
pattern with candidate data base entries. This section of 
the paper discusses these issues in some detail. Throughout 
the discussion, the iris-recognition systems of Daugman 
[12]-[14] and Wildes et al. [52]-[54] will be used to 
provide illustrations. 

A. Image Acquisition

One of the major challenges of automated iris recognition
is to capture a high-quality image of the iris while remaining 
noninvasive to the human operator. Given that the iris is 
a relatively small (typically about 1 cm in diameter), dark 
object and that human operators are very sensitive about 
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their eyes, this matter requires careful engineering. Several 
points are of particular concern. First, it is desirable to 
acquire images of the iris with sufficient resolution and 
sharpness to support recognition. Second, it is important 
to have good contrast in the interior iris pattern without 
resorting to a level of illumination that annoys the operator, 
i.e., adequate intensity of source (W/cm2) constrained by
operator comfort with brightness (W/sr-cm2). Third, these
images must be well framed (i.e., centered) without unduly
constraining the operator (i.e., preferably without requiring
the operator to employ an eye piece, chin rest, or other
contact positioning that would be invasive). Further, as
an integral part of this process, artifacts in the acquired
images (e.g., due to specular reflections, optical aberrations,
etc.) should be eliminated as much as possible. Schematic
diagrams of two image-acquisition rigs that have been
developed in response to these challenges are shown in
Fig. 4.

Extant iris-recognition systems have been able to answer 
the challenges of image resolution and focus using standard 
optics. The Daugman system captures images with the iris 
diameter typically between I 00 and 200 pixels from a 
distance of 15-46 cm using a 330-mm lens. Similarly, the 
Wildes et al. system images the iris with approximately 256 
pixels across the diameter from 20 cm using an 80-mm lens. 
Due to the need to keep the illumination level relatively 
low for operator comfort, the optical aperture cannot be 

too small (e.g., f-stop l l ). Therefore, both systems have 
fairly small depths of field, approximately I cm. Video 
rate capture is exploited by both systems. Typically, this 
is sufficient to guard against blur due to eye movements 
provided that the operator is attempting to maintain a steady 
gaze. Empirically, the overall spatial resolution and focus 
that results from these designs appear to be sufficient to sup-
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Fig. 4. Image-acquisition rigs for automated iris recognition. (a) A schematic diagram of the 
Daugman image-acquisition rig. (b) A schematic diagram of the Wildes et al. image-acquisition rig. 

port iris recognition. Interestingly, additional investigations 
have shown that images of potential quality to support iris 
recognition can be acquired in rather different settings. For 
example, iris images can be acquired at distances up to a 
meter (using a standard video camera with a telephoto lens) 
[54). Further, iris images can be acquired at very close range 
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while an operator wears a head-mounted display equipped 

with light emitting diode (LED) illuminants and micr,,
miniature optics and camera [47). However, iris images 

acquired in these latter fashions have received only very 

preliminary testing with respect to their ability to support 
recognition. 
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Illumination of the iris must be concerned with the trade
off between revealing the detail in a potentially low contrast 
pattern (i.e., due to dense pigmentation of dark irises) and 
the light sensitivity of human operators. The Daugman and 
Wildes et al. systems illustrate rather different approaches 
to this challenge. The former makes use of an LED-based 
point light source in conjunction with a standard video 
camera. The latter makes use of a diffuse source and 
polarization in conjunction with a low-light level camera. 
The former design results in a particularly simple and 
compact system. Further, by careful positioning of the light 
source below the operator, reflections of the point source 
off eyeglasses can be avoided in the imaged iris. Without 
placing undue restriction on the operator, however. it has 
not been possible to reliably position the specular reflection 
at the eye· s cornea outside the iris region. Therefore, this 
design requires that the region of the image where the 
point source is seen (the lower quadrant of the iris as 
the system has been instantiated) must be omitted during 
matching since it is dominated by artifact. The latter design 
results in an illumination rig that is more complex; however, 
certain advantages result. First, the use of matched circular 
polarizers at the light source and the camera essentially 
eliminates the specular reflection of the light source. 2 This 
allows for more of the iris detail to be available for 
subsequent processing. Second, the coupling of a low light 
level camera (a silicon intensified camera [26]) with a 
diffuse illuminant allows for a level of illumination that 
is entirely unobjectionable to human operators. In terms of 
spectral distribution, both systems make use of light that is 
visible to human operators. It has been suggested, however, 
that infrared illumination would also suffice [14], [47). 
Further, both systems essentially eschew color information 
in their use of monochrome cameras with 8-b gray-level 
resolution. Presumably, color information could provide 
additional discriminatory power. Also, color could be of 
use for initial coarse indexing through large iris data bases. 
For now, it is interesting to note that empirical studies to 
date suggest the adequacy of gray-level information alone 
(see, e.g., Section III). 

The positioning of the iris for image capture is concerned 
with framing all of the iris in the camera's field of view 
with good focus. Both the Daugman and Wildes et al.

systems require the operator to self-position his eye region 
in front of the camera. Daugman's system provides the 
operator with live video feedback via a miniature liquid
crystal display placed in line with the camera's optics via 
a beam splitter. This allows the operator to see what the 
camera is capturing and to adjust his position accordingly. 

2 Light emerging from the circular polarizer will have a particular sense
of rotation. When this light slrikes a specularly reflecting surface (e.g., the 
cornea), the light that is reflected back is still polarized but has reversed 
sense. This reversed-sense light is not passed through the camera's filter 
and is thereby blocked from forming an image. In contrast, the diffusely 
reflecting parts of the eye (e.g .. the iris) scatter the impinging light. This 
light is passed through the camera's filter and is subsequently available 
for image formation [31]. Interestingly, a similar solution using crossed 
polarizers ( e.g .. venical at the illuminant and horizontal at the camera) is 
not appropriate for this application: the birefringence of the eye's cornea 
yields a low-frequency artifact in the acquired images [I OJ. 
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During this process, the system is continually acquiring 
images. Once a series of images of sufficient quality is 
acquired, one is automatically forwarded for subsequent 
processing. Image quality is assessed by looking for high
contrast edges marking the boundary between the iris and 
the sclera. 

In contrast, the Wildes et al. system provides a reticle to 
aid the operator in positioning. In particular, a square con
tour is centered around the camera lens so that it is visible to 
the operator. Suspended in front of this contour is a second, 
smaller contour of the same shape. The relative sizes and 
positions of these contours are chosen so that when the eye 
is in an appropriate position, the squares overlap and appear 
as one to the operator. As the operator maneuvers, the 
relative misalignment of the squares provides continuous 
feedback regarding the accuracy of the current position. 
Once the operator has completed the alignment, he activates 
the image capture by pressing a button. 

Subjectively, both of the described approaches to posi
tioning are fairly easy for a human operator to master. Since 
the potential for truly noninvasive assessment is one of the 
intriguing aspects of iris recognition, however, it is worth 
underlining the degree of operator participa!ion that is re
quired in these systems. While physical contact is avoided, 
the level of required cooperativity may still prevent the 
systems from widespread application. In fact, it appears that 
all extant approaches to automated iris recognition require 
operator assistance for this purpose (i.e., as additionally 
reported in [32], [37], and [48]). Therefore, an interesting 
direction for future research involves the development of 
a system that automatically frames an operator's iris over 
a larger three-dimensional volume with minimal operator 
participation. For example, the ability to locate a face within 
a range of about a meter and then to point and zoom a 
camera to acquire an image of the eye region has been 
demonstrated using available computer vision technology 
[23]. While this work is quite preliminary, it suggests the 
possibility of acquiring iris images in scenarios that are 
more relaxed than those required by current iris-recognition 
systems. The ability to perform this task in an effective and 
efficient manner is likely to have great implications for the 
widespread deployment of iris recognition. 

For graphical illustration, an image of an iris, including 
the surrounding eye region, is shown in Fig. 5. The quality 
of this image, acquired from the Wildes et al. system, could 
be expected from either of the systems under discussion. 

B. Iris Localization

Without placing undue constraints on the human operator,
image acquisition of the iris cannot be expected to yield an 
image containing only the iris. Rather, image acquisition 
will capture the iris as part of a larger image that also 
contains data derived from the immediately surrounding eye 
region. Therefore, prior to performing iris pattern matching, 
it is important to localize that portion of the acquired image 
that corresponds to an iris. In particular, it is necessary 
to localize that portion of the image derived from inside 
the limbus (the border between the sclera and the iris) and 
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Fig. 5. Example of captured iris image. Imaging of the iris must acquire sufficient detail for
recognition while being minimally invasive to the operator. Image acquisition yields an image of 
the iris as well as the surrounding eye region. 

outside the pupil. Further. if the eyelids are occluding part 
of the iris, then only that portion of the image below the 
upper eyelid and above the lower eyelid should be included. 
Typically, the limbic boundary is imaged with high contrast, 
owing to the sharp change in eye pigmentation that it 
marks. The upper and lower portions of this boundary, 
however, can be occluded by the eyelids. The pupillary 
boundary can be far less well defined. The image contrast 
between a heavily pigmented iris and its pupil can be 
quite small. Further. while the. pupil typically is darker 
than the iris, the reverse relationship can hold in cases 
of cataract: the clouded lens leads to a significant amount 
of backscanered light. Like the pupillary boundary, eyelid 
contrast can be quite variable depending on the relative 
pigmentation in the skin and the iris. The eyelid boundary 
also can be irregular due to the presence of eyelashes. Taken 
in tandem, these observations suggest that iris localization 
must be sensitive to a wide range of edge contrasts, robust 
to irregular borders, and capable of dealing with variable 
occlusion. 
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Reference to how the Daugman and Wildes et al. iris
recognition systems perform iris localization further illus
trates the issues. Both of these systems make use of first 
derivatives of image intensity to signal the location of 
edges that correspond to the borders of the iris. Here, 
the notion is that the magnitude of the derivative across 
an imaged border will show a local maximum due to 
the local change of image intensity. Also, both systems 
model the various boundaries that delimit the iris with 
simple geometric models. For example, they both model 
the limbus and pupil with circular contours. The Wildes 
et al. system also explicitly models the upper and lower 
eyelids with parabolic arcs, whereas the Daugman system 
simply excludes the upper- and lower-most portions of the 
image, where eyelid occlusion is expected to occur. In both 
systems, the expected configuration of model components is 
used to fine tune the image intensity derivative information. 
In particular, for the limbic boundary, the derivatives are 
filtered to be selective for vertical edges. This directional 
selectivity is motivated by the fact that even in the face of 
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occluding eyelids, the left and right portions of the limbus
should be visible and oriented near the vertical (assuming 
that the head is in an upright position). Similarly, the deriva
tives are filtered to be selective for horizontal information 
when locating the eyelid borders. In contrast, since the 
entire (roughly circular) pupillary boundary is expected to 
be present in the image, the derivative information is used 
in a more isotropic fashion for localization of this structure.
In practice, this fine tuning of the image information has
proven to be critical for accurate localization. For example,
without such tuning, the fits can be driven astray by
competing image structures (e.g., eyelids interfering with
limbic localization, etc.). 

The two systems differ mostly in the way that they search
their parameter spaces to fit the contour models to the image
information. To understand how these searches proceed,
let I(x.y) represent the image intensity value at location
(.r, y) and let circular contours (for the limbic and pupillary
boundaries) be parameterized by center location (xc , Ye)
and radius r. The Daugman system fits the circular contours 
via gradient ascent on the parameters ( x c, Ye , r) so as to 
maximize 

j!_G(r) * i I(x,y) ds lOr 
r,Xc ,Ye 

21rr 

where G(r)=(l//27ra)e-((r-rol212"2) is a radial Gauss
ian with center r0 and standard deviation a that smooths 
the image to select the spatial scale of edges under con
sideration, * symbolizes convolution, ds is an element of
circular arc, and division by 21rr serves to normalize the
integral. In order to incorporate directional tuning of the
image derivative, the arc of integration ds is restricted to
the left and right quadrants (i.e., near vertical edges) when
fitting the limbic boundary. This arc is considered over a
fuller range when fitting the pupillary boundary; however,
the lower quadrant of the image is still omitted due to
the artifact of the specular reflection of the illuminant in
that region (see Section II-A). In implementation, the con
tour fitting procedure is discretized, with finite differences
serving for derivatives and summation used to instantiate
integrals and convolutions. More generally, fitting contours
to images via this type of optimization formulation is a
standard machine vision technique, often referred to as
active contour modeling (see, e.g., [33] and [57]). 

The Wildes et al. system performs its contour fitting in
two steps. First, the image intensity information is con
verted into a binary edge-map. Second, the edge points vote
to instantiate particular contour parameter values. The edge
map is recovered via gradient-based edge detection [2],
[44]. This operation consists of thresholding the magnitude
of the image intensity gradient, i.e., jv7G(x,y) * I(x,y)I,
where v7 = (8/8x, 8/8y) while 

is a two-dimensional Gaussian with center (xo, yo) and
standard deviation a that smooths the image to select the
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spatial scale of edges under consideration. In order to in
corporate directional tuning, the image intensity derivatives
are weighted to favor certain ranges of orientation prior to
taking the magnitude. For example, prior to contributing
to the fit of the limbic boundary contour, the derivatives
are weighted to be selective for vertical edges. The voting 
procedure is realized via Hough transforms [27], [28] on
parametric definitions of the iris boundary contours. In
particular, for the circular limbic or pupillary boundaries
and a set of recovered edge points (x1,yj), j = J. .. .. n, 
a Hough transform is defined as 

where 

with 

n 

H(xc,Yc,r) = "'f:,h(x1,y1,Xc•Yc,r) 
J=l 

( ) ( )2 ( )2 . 2 gx1,yj,Xc ,Yc ,r = X1-Xc + Y;-Yc -r. 

For each edge point (x1,yj), g(x;,y1,xc ,Yc •r) = 0 for 
every parameter triple (xc , Ye , r) that represents a circle 
through that point. Correspondingly, the parameter triple
that maximizes H is common to the largest number of edge
points and is a reasonable choice to represent the contour
of interest. In implementation, the maximizing parameter
set is computed by building H(xc, Ye , r) as an array that
is indexed by discretized values for Xe , Ye , and r. Once
populated, the array is scanned for the triple that defines its
largest value. Contours for the upper and lower eyelids are
fit in a similar fashion using parameterized parabolic arcs
in place of the circle parameterization g(xi•Yi•Xc,Yc ·r).
Just as the Daugman system relies on standard techniques
for iris localization, edge detection followed by a Hough
transform is a standard machine vision technique for fining
simple contour models to images [2], [44]. 

Both approaches to localizing the iris have proven to be
successful in the targeted application. The histogram-based
approach to model fitting should avoid problems with local
minima that the active contour model's gradient descent
procedure might experience. By operating more directly
with the image derivatives, however, the active contour
approach avoids the inevitable thresholding involved in
generating a binary edge-map. Further, explicit modeling
of the eyelids (as done in the Wildes et al. system) should
allow for better use of available information than sim
ply omitting the top and bottom of the image. However,
this added precision comes with additional computational
expense. More generally, both approaches are likely to
encounter difficulties if required to deal with images that
contain broader regions of the surrounding face than the
immediate eye region. For example, such images are likely
to result from image-acquisition rigs that require less oper
ator participation than those currently in place. Here, the
additional image "clutter" is likely to drive the current,
relatively simple model fitters to poor results. Solutions to
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Fig. 6. Illustrative results of iris localization. Given an acquired image. it is necessary to separate 
the iris from the surround. The input to the localization process was the captured iris image of 
Fig. 5. Following iris localization. all but the iris per se is masked out. 

this type of situation most likely will entail a preliminary 
coarse eye localization procedure to seed iris localization 
proper. In any case. following successful iris localization, 
the portion of the captured image that corresponds to the 
iris can be delimited. Fig. 6 provides an example result of 
iris localization as perfonned by the Wildes et al. system. 

C. Pattern Matching

Having localized the region of an acquired image that
corresponds to the iris, the final task is to decide if this 
pattern matches a previously stored iris pattern. This matter 
of pattern matching can be decomposed into four parts: 

I) bringing the newly acquired iris pattern into spatial
alignment with a candidate data base entry;

2) choosing a representation of the aligned iris patterns
that makes their distinctive patterns apparent;

3) evaluating the goodness of match between the newly
acquired and data base representations;
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4) deciding if the newly acquired data and the data base
entry were derived from the same iris based on the·
goodness of match.

1) Alignment: To make a detailed comparison between
two images, it is advantageous to establish a precise corre• 
spondence between characteristic structures across the pair. 
Both of the systems under discussion compensate for image 
shift, scaling. and rotation. Given the systems' ability to aid 
operators in accurate self-positioning, these have proven to 
be the key degrees of freedom that required compensation. 
Shift accounts for offsets of the eye in the plane parallel to 
the camera's sensor array. Scale accounts for offsets along 
the camera's optical axis. Rotation accounts for deviation 
in angular position about the optical axis. Nominally, pupil 
dilation is not a critical issue for the current systems 
since their constant controlled illumination should bring: 
the pupil of an individual to the same size across trials 
(barring illness, etc.). For both systems, iris localization is 
charged with isolating an iris in a larger acquired image and 
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thereby essentially accomplishes alignment for image shift.
Daugman' s system uses radial scaling to compensate for
overall size as well as a simple model of pupil variation
based on linear stretching. This scaling serves to map
Cartesian image coordinates (x, y) to dimensionless polar
image coordinates ( r, 0) according to 

x(r, 0) = (1 - r)xp(0) + rx1(0)
y(r, 0) = (1 - r)yp(0) + ry1(0) 

where r lies on [O, 1] and 0 is cyclic over [O, 21r], while
(:rp(0). yp(0)) and (x1(0).y1(0)) are the coordinates of
the pupillary and limbic boundaries in the direction 0.
Rotation is compensated for by explicitly shifting an iris
representation in 0 by various amounts during matching. 

The Wildes et al. system uses an image-registration
technique to compensate for both scaling and rotation.
This approach geometrically warps a newly acquired image
Ia (x, y) into alignment with a selected data base image
Id(x,y) according to a mapping function (u(x,y),v(x,y))
such that for all ( x, y), the image intensity value at ( x, y) -
(u(x, y). v(x, y)) in Ia is close to that at (x, y) in h More
precisely, the mapping function ( u. v) is taken to minimize

11 (Jd(x, y) - Ia(X - u. y - v))2 dx dy

while being constrained to capture a similarity transforma
tion of image coordinates (x, y) to (x'. y'), i.e., 

with s a scaling factor and R( <fJ) a matrix representing
rotation by rp. In implementation, given a pair of iris images
Ia and Id, the warping parameters s and </J, are recovered
via an iterative minimization procedure [3]. 

As with much of the processing that the two iris
recognition systems perform, the methods for establishing
correspondences between acquired and data base iris images
seem to be adequate for controlled assessment scenarios.
Once again, however, more sophisticated methods may
prove to be necessary in more relaxed scenarios. For
example, a simple linear stretching model of pupil
dilation does not capture the complex physical nature
of this process, e.g., the coiling of blood vessels and the
arching of stromal fibers. Similarly, more complicated
global geometric compensations will be necessary if
full perspective distortions (e.g., foreshortening) become
significant. 

2) Representation: The distinctive spatial characteristics
of the human iris are manifest at a variety of scales. For
example, distinguishing structures range from the overall
shape of the iris to the distribution of tiny crypts and
detailed texture. To capture this range of spatial detail, it
is advantageous to make use of a multiscale representation.
Both of the iris-recognition systems under discussion make
use of bandpass image decompositions to avail themselves
of multiscale information. The Daugman system makes use
of a decomposition derived from application of a two
dimensional version of Gabor filters [21] to the image data.

WILDES: IRIS RECOGNITION 

Since the Daugman system converts to polar coordinates
( r, 0) during alignment, it is convenient to give the filters
in a corresponding form as 

H( r, 0) = e-iw(l1-llo) e-(r-ro)2 /02 e-i(ll-110)2 / 32

where a and /3 covary in inverse proportion to w to
generate a set of quadrature pair frequency-selective filters
with center locations specified by ( rO. 00). These filters
are particularly notable for their ability to achieve good
joint localization in the spatial and frequency domains.
Further, owing to their quadrature nature, these filters
can capture information about local phase. Following the
Gabor decomposition, Daugman' s system compresses its
representation by quantizing the local phase angle according
to whether the real, IR(·), and imaginary, 's(·), filter outputs
are positive or negative. For a filter given with bandpass
parameters o. /3, and wand location (r0. 0o), a pair of bits
( h'R , h'J) is generated according to 

h'R = 1 if IR(/ i e-i;.;(llo-l!l)e-(ro-p)" /02 

x e-i(llo-Ll° 
13

2 

I(p. 1/1 )pdpd1j)) 2 0

h'R = 0 if IR(/ 1. e-i-·(llo-L)e-(ro-p)2/o"

x e-i(l1o-L"i1

/i3
2 l(p.'lj1)pdpd1jJ) < 0

h'J = 1 if 's(/ i e-i ... (llo-v)e-(ro-p)° /a" 

x e-i(llo-vl2

13
2 l(

p.1h)pdpd1j1) 2 0

h'J = 0 if 's(/ l e-i...;(llo-11J)e-(ro-p)2 /02 

X e-i(llo-L")2 /P2

J(
p.1/J)pdpdw) < 0.

The parameters rO, 00 . er, /3. and w are sampled so as to
yield a 256-byte representation that serves as the basis
for subsequent processing. In implementation, the Gabor
filtering is performed via a relaxation algorithm [ 11], with
quantization of the recovered phase information yielding
the final representation. 

The Wildes et al. system makes us of an isotropic band
pass decomposition derived from application of Laplacian
of Gaussian filters [25], [29] to the image data. These filters
can be specified as 

__ 1_(1- L) e
-p2/2u2 

1ra4 2a2 

with a the standard deviation of the Gaussian and p the
radial distance of a point from the filter's center. In practice,
the filtered image is realized as a Laplacian pyramid [8],
[29]. This representation is defined procedurally in terms
of a cascade of small Gaussian-like filters. In particular,
let w = [1 4 6 4 l]/16 be a one-dimensional mask and
W = w T w be the two-dimensional mask that results from
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Fig. 7. Multiscale representation for iris panern matching. Distinctive features of the iris are 
manifest across a range of spatial scales. Panern matching is well served by a bandpass decom
position spanning high to low spatial frequency. A compact representation results from successive 
subsampling of lower frequency bands. The localized iris of Fig. 6 is shown under such a multiscale 
representation. 

taking the outer product of w with itself. Given an image of 
interest I. construction of a Laplacian pyramid begins with 
convolution of I with W so as to yield a set of low-pass 
filtered images g1c according to 

with _q0 = I and ( ·) 12 symbolizing down sampling by a 
factor of two in each image dimension. The kth level of the 
Laplacian pyramid I 1c is formed as the difference between 
9k and .9H1, with .9Hi expanded before subtraction so 
that it matches the sampling rate of g •.. The expansion is 
accomplished by upsampling and interpolation 

l1c = g. - 4H" * (m-+1h2 

where ( • )T2 indicates upsampling by a factor of two via 
insertion of a row and column of zeros between each 
row and column of the original image. The generating 
kernel ff is used as the interpolation filter. and the factor 
of four is necessary because 3/4 of the samples in the 
image are newly inserted zeros. The resulting Laplacian 
pyramid. constructed with four le\'e)s, serves as the basis 
for subsequent processing. The difference of Gaussians that 
the construction of this representation entails yields a good 
approximation to Laplacian of Gaussian filtering (39]. Ad
ditionally. it is of note for efficient storage and processing as 
lower frequency bands are subsampled successively without 
loss of information beyond that introduced by the filtering. 
In implementation. Laplacian pyramid construction follows 
in a straightforward fashion from its procedural definition. 

By quantizing its filter outputs. the representational ap
proach that is used in the Daugman system yields a re
markably parsimonious representation of an iris. Indeed, 
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a representation with a size of 256 bytes can be accom
modated on the magnetic stripe affixed to the back of 
standard credit/debit cards [7). In contrast, the Wildes et al.

representation is derived directly from the filtered image for 
size on the order of the number of bytes in the iris region 
of the originally captured image. By retaining more of the 
available iris information. however, the Wildes et al. system 
might be capable of making finer grained distinctions 
between different irises. Since large-scale studies of iris 
recognition are currently lacking, it is too early to tell 
exactly how much information is necessary for adequate 
discrimination in the face of sizable samples from the 
human population. In any case, in deriving their represen
tations from bandpass filtering operations, both approaches 
capitalize on the multi scale structure of the iris. For the sake 
of illustration, an example multiscale representation of an 
iris as recovered by the Wildes et al. system. is shown in 
Fig. 7. 

3) Goodness of Match: Given the systems' controlled
image acquisitions and abilities to bring data base entry and 
newly acquired data into precise alignment, an appropriate 
match metric can be based on direct point-wise comparisons 
between primiti,·es in the corresponding representations. 
The Daugman system quantifies this matter by computing 
the percentage of mismatched bits between a pair of iris 
representations. i.e.. the normalized Hamming distance 
[30]. Letting .4 and B be two iris representations to be 
compared, this quantity can be calculated as 

j=2.048 

2048 L Aj (f Bj 
j=l 
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with subscript j indexing bit position and EB denoting the 
exclusive-OR operator. (The exclusive-OR is a Boolean 
operator that equals one if and only if the two bits Ai and 
Bi are different.) The result of this computation is then used 
as the goodness of match, with smaller values indicating 
better matches. The exclusive-OR of corresponding bits 
in the acquired and data base iris representations can 
be calculated with negligible computational expense. This 
allows the system to compare an acquired representation 
with interesting numbers of data base entries (e.g., on the 
order of 103) in under a second. The system exploits this 
comparison rate as a brute force solution to identification, 
not just verification of an operator, i.e., sequential exam
ination of each record in moderate-size data bases. While 
this search ability is impressive, identification in the face 
of significantly larger data bases might require a cleverer 
indexing strategy. 

The Wildes et al. system employs a somewhat more 
elaborate procedure to quantify the goodness of match. The 
approach is based on normalized correlation between the 
acquired and data base representations. In discrete form, 
normalized correlation can be defined in the following 
fashion. Let p1 [i, j] and p2[i, j] be two image arrays of size 
n x m. Further, let µ 1 = (I/nm) L� i Lii PI [i, j] and 

n m 

a-1 = (I/nm) L L(pi[i.j] - µ1)2 

i=l j=l 

be the mean and standard deviation for the intensities of p 1• 
respectively. Also, let µ2 and a-2 be similarly defined with 
reference to P2. Then, the normalized correlation between 
P1 and P2 can be defined as 

L�1 L;: 1 (Pi[i,j] - µi)(p2[i,j] - µ2) 
nma-1a-2 

Normalized correlation captures the same type of infor
mation as standard correlation (i.e., integrated similarity 
of corresponding points in the regions); however, it also 
accounts for local variations in image intensity that corrupt 
standard correlation [2]. This robustness comes about as 
the mean intensities are subtracted in the numerator of the 
correlation ratio, while the standard deviations appear in 
the denominator. In implementation, the correlations are 
performed discretely over small blocks of pixels (8 x 8) in 
each of the four spatial frequency bands that are instantiated 
in the Laplacian pyramid representations. These operations 
result in multiple correlation values for each band. Subse
quent processing combines the block correlations within 
a band into a single value via the median statistic. In 
sum, this yields a set of four goodness-of-match values, 
one for each frequency band. Blocking combined with the 
median operation allows for local adjustments of matching 
and a degree of outlier rejection, and thereby provides 
robustness against mismatches due to noise, misalignment, 
and occlusion (e.g., a stray eyelash). This method has been 
applied to the verification task only. 

WILDES: IRIS RECOGNITTON 

4) Decision: The final task that must be performed for
current purposes is to evaluate the goodness-of-match val
ues into a final judgment as to whether the acquired data 
does (authentic) or does not (imposter) come from the 
same iris as does the data base entry. For the Daugman 
system, this amounts to choosing a separation point in 
the space of (normalized) Hamming distances between iris 
representations. Distances smaller than the separation point 
will be taken as indicative of authentics; those larger will 
be taken as indicative of imposters.3 An appeal to statistical 
decision theory [36], (49] is made to provide a principled 
approach to selecting the separation point. There, given 
distributions for the two events to be distinguished (i.e., 
authentic versus imposter), the optimal decision strategy 
is defined by taking the separation as the point at which 
the two distributions cross over. This decision strategy is 
optimal in the sense that it leads to equal probability of 
false accept and false reject errors. (Of course, even with a 
theoretically "optimal" decision point in hand, one is free to 
choose either a more conservative or more liberal criterion 
according to the needs of a given installation.) In order 
to calculate the cross-over point, sample populations of 
imposters and authentics were each fit with parametrically 
defined distributions. This was necessary since no data, i.e., 
Hamming distances, were observed in the cross-over region. 
Binomial distributions [ I 7] were used for the empirical fits. 
A binomial distribution is given as 

p(k) = (; )Pk(l - Pf-k

where 
(n) n! 

k 
= 

(n = k)!k

is the number of k combinations of n distinguishable items. 
This formula gives the probability of k successes in n
independent Bernoulli trials. A Bernoulli trial, in tum, is 
defined to generate an experimental value of a discrete 
random variable v according to the distribution 

{
1 - P, vo = 0 

Pv(vo) = P, Vo = l 
0, otherwise 

with an outcome of v = l taken as a success and an 
outcome of v = 0 taken as a failure. The use of a binomial
distribution was justified for the case of imposter matches 
based on the distinctiveness of different irises. That is, the 
matching of bits between a pair of representations from 
different irises was taken to be a series of Bernoulli trials. 
Not all of the bit matches were taken as independent, 
however, due to the presence of inherent correlations in 
iris structure as well as correlations introduced during 
processing. Significantly, no such justification was given 
for the modeling of the authentics. 

3 As documented, both the Daugman and Wildes et al. systems remain 
agnostic about how to deal with cases that lie at their separation points, 
where the goodness of match is supposed to be equally supportive of 
deciding "authentic" or "imposter." In empirical evaluations, it appears that 
neither system has been confronted with this situation (see Section Ill). 
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For the Wildes et al. system, the decision-making process 
must combine the four goodness-of-match measurements 
that are calculated by the previous stage of processing (i.e., 
one for each pass band in the Laplacian pyramid represen
tation) into a single accept/reject judgement. Recourse is 
had in standard techniques from pattern classification. In 
particular, the notion that is appealed to is to combine the 
values in a fashion so that the variance within a class of 
iris data is minimized while the variance between different 
classes of iris data is maximized. The linear function that 
provides such a solution is well known and is given by 
Fisher's linear discriminant [18], [19]. This function can 
be defined in the following fashion. Let there be n d
dimensional samples q, nu of which are from a set A and 
n; of which are from a set I. For example, in the current 
application, each sample corresponds to a set of multiscale 
goodness-of-match measurements, while the classes to be 
distinguished are the authentics and imposters. Fisher's 
linear discriminant defines a weight vector w such that the 
ratio of between class variance to within class variance is 
maximized for the transformed samples w T q. To formalize 
this notion, let µa = (L

qEA q)/n; be the d-dimensional 
mean for q E A and similarly for µ;. A measure of variance 
within a class of data can be given in terms of a scatter 
matrix with the form 

Sa = L(q - µa)(q - µa f 
qEA 

for A and with S; similarly defined for I. The total within 
class scatter is given as Sw = Sa + S;. A corresponding 
measure of variance between classes can be defined in terms 
of the scatter matrix 

With the preceding definitions in hand, the expression 

wTSbw 
W TSu,W 

describes the ratio of between to within class variance of the 
transformed samples wq. Last, the use of a bit of calculus 
and linear algebra leads to the conclusion that the w that 
maximizes this ratio is given as 

w = s;;/(µa - µ;), 

Interestingly, Sb does not appear in this formula for ;;.,' 
since it simply scales the overall result without otherwise 
changing the separation. To apply this discriminant function 
to classification, a separation point must be defined in its 
range. Values above this point will be taken as derived from 
class A; values below this point will be taken as derived 
from class I. In the current application, the separation point 
is taken as the midpoint between the transformed means 
of the samples from A and I, i.e., ( 1 /2 )w T (JLa + µ; ). If 
the probabilities of the measurements given either class 
are normally distributed and have equal variance, (i.e., 
p(qlA) = l//21rae-lq-µal112,,,-z with a2 the variance
[17], and similarly for I), then this choice of separation 
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point can be shown to be optimal (i.e., equal probability 
of false accept and false reject errors). It is heuristic for 
the case of iris match measurements, however, where these 
assumptions are not known to hold. In implementation, the 
discriminant was defined empirically based on a set of iris 
training data. 

While both of the decision methods have performed well 
to date, the underlying data-modeling assumptions need to 
be rigorously evaluated against a larger corpus of data. 
Both of the methods rely on the assumptions that the 
imposter and authentic populations can each be modeled 
with single distributions. A basic tenet of iris recognition 
is that different irises are highl_y distinct. Therefore, it 
is reasonable to view the distribution of imposters as 
varying about a central tendency dictated by some notion 
of independence, e.g., a 50% chance of individual bits' 
matching in the Daugman representation or poor correlation 
for the multiscale matches in the Wildes et al. system. 
Indeed, empirically, this seems to be the case for both 
systems. However, there is no such theoretical underpining 
for modeling the authentics with a single distribution. 
In fact, one might argue that authentics would be best 
modeled by a mixture of distributions, perhaps even one 
distribution for repeat occurrences of each iris. From an 
empirical point of view, it is of concern that the current 
decision strategies are derived from rather small samples 
of the population {i.e., on the order of 102). This matter is 
exacerbated by the fact that little data has been reported in 
the cross-over regions for the decisiof!S, exactly the points 
of most concern. To resolve these issues properly, it will 
be necessary to consider a larger sample of iris data than 
the current systems have employed. 

5) A Caveat: Both of the reviewed approaches to pattern
matching are based on methods that are closely tied to the 
recorded image intensities. More abstract representations 
may be necessary to deal with greater variation in the 
appearance of any one iris, e.g., as might result from more 
relaxed image acquisition. One way to deal with greater 
variation would be to extract and match sets of features 
that are expected to be more robust to photometric and 
geometric distortions in the acquired images. In particular, 
features that bear a closer and more explicit relationship 
to physical structures of the iris might exhibit the desired 
behavior. For example, preliminary results indicate that 
multiscale blob matching could be valuable in this regard 
[54]. This approach relies on the correspondence between 
the dark and light blob structures that typically are apparent 
in iris images and iris structures such as crypts, freckles, 
nevi, and striations. If current methods in iris pattern 
matching begin to break down in future applications, then 
such symbolic approaches will deserve consideration. It 
is worth noting, however, that the added robustness that 
these approaches might yield will most likely come with 
increased computational expense. 

D. Recapitulation
The main functional components of extant iris

recognition systems consist of image acquisition, iris 
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Jocalization. and pattern matching. In evaluating designs 
for these components, one must consider a wide range 
of technical issues. Chief among these are the physical 
nature of the iris, optics, image processing/analysis, and 
human factors. All these considerations must be combined 
10 yield robust solutions even while incurring modest 
..:omputational expense and compact design. Example 
solutions to these issues are in place. These solutions 
have proven to be reliable in preliminary evaluations. 
More challenging operational scenarios (e.g., acquisition 
of images with less operator participation) might require 
somewhat different or at least more elaborate approaches. 

Ill. SYSTEMS AND PERFORMANCE 
The image-acquisition. iris-localization, and pattern

matching components developed by Daugman [12]-[14] 
and Wildes et al. [52]-[54] have been assembled into 
prototype iris-recognition systems. Both of these systems 
have been awarded U.S. patents [15], [55]. Further, both 
systems have been the subject of preliminary empirical 
evaluation. In this section, the system and perfonnance 
aspects of the two approaches are described. 

The Daugman iris-recognition system consists of 
an image-acquisition rig (standard video camera, lens, 
framegrabber, LED illuminator and miniature video display 
for operator positioning) interfaced to a standard computer 
workstation (a Sun 4). The image-analysis software for 
the system has been implemented in optimized integer 
code. The system is capable of three functional modes 
of operation: enrollment, verification, and identification. 
In enrollment mode, an image of an operator is captured 
and a corresponding data base entry is created and stored. 
In verification mode, an image of an operator is acquired 
and is evaluated relative to a specified data base entry. In 
identification mode, an image is acquired and evaluated 
relative to the entire data base via sequential comparisons. 
Both the enrollment and verification modes take under I s 
to complete. The identification mode can evaluate against a 
data base of up to 4000 entries in the same amount of time. 
A commercial version of this system also is available 
through IriScan [46]. This version embodies largely 
the same approach, albeit with further optimization and 
special-purpose hardware for a more compact instantiation. 

The Daugman system has been subjected to two sets 
of empirical tests. In the first study, 592 irises were rep
resented as derived from 323 persons [14]. An average 
of approximately three images were taken of each iris. 
(The time lag involved in repeat captures of a single iris 
has not been reported.) The irises involved spanned the 
range of common iris colors: blue, hazel, green, and brown. 
This preparation allows for evaluation of authentics and 
imposters across a representative range of iris pigmen
tations and with some passage of time. In the face of 
this data set, the system exhibited no false accepts and 
no false rejects. In an attempt to analyze the data from 
this experiment, binomial distributions were fit to both the 
observed authentic and imposter scores, i.e., as previously 
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described during the discussion of pattern matching. The 
fits were used to calculate several statistics. The cross
over error rate for false accepts and false rejects was 
found to be 1 in 131 000. Further, based on the means 
of the fits, typical matching statistics were calculated. 
For the "typical" imposter comparison, the confidence 
with which the operator was rejected corresponded to a 
conditional false reject probability of I in 109

•
6

. For the 
"typical" authentic comparison, the confidence with which 
the operator was accepted corresponded to a conditional 
false accept probability of I in I 031

. Interpretation of 
these inferences requires caution. As noted during the 
discussion of pattern matching, justification for fitting the 
observed data with binomial distributions is problematic. 
From a theoretical point of view, it is not clear why such 
a distribution is appropriate for the case of authentics. 
From an empirical point of view, the fits are based on 
small samples of the populations, and data is lacking in the 
critical cross-over region. Nevertheless, it is worth noting 
that qualitatively, the data for authentics and imposters were 
well separated in this study. 

In a second study, a preproduction version of the com
mercial IriScan system was evaluated [6]. In this study. the 
system was installed in a public space at Sandia National 
Laboratories, NM. Operators consisted of volunteers from 
the Sandia community. The study was conducted in two 
phases. In the first phase, 199 irises were represented 
as derived from 122 people. Following enrollment the 
operators made a total of 878 attempts to use the system 
in identification mode over a period of eight days. Of these 
attempts, 89 false rejects were recorded. For 47 of these 
cases, however, the operator made a retry, and all but 16 
of these were accepted. All of these errors were traced 
to either reflections from eye wear that obscured the iris 
or user difficulty (e.g., difficulty in self-positioning). No 
false accepts were recorded. In the second phase, 96 of the 
people involved in the first phase attempted an identification 
relative to a data base with 403 entries, none of which 
corresponded to the operators in question. Once again, no 
false accepts were recorded. This study is of particular 
interest since of the reported iris-recognition tests, it comes 
closest to approximating an actual deployment of a system. 
In both studies of the Daugman system, operators found 
it to be generally unobjectionable in subjective evaluation. 
However, some reports of discomfort with the illuminant 
were recorded in the second study. 

The Wildes et al. iris-recognition system consists of 
an image-acquisition rig (low light video camera, lens, 
framegrabber, diffuse polarized illuminator, and reticle for 
operator positioning) interfaced to a standard computer 
workstation (a Sun SPARCstation 20). The image-analysis 
software for the system has been implemented in the C 
or UNIX C Shell languages without optimization. This 
system is capable of two functional modes of operation: 
enrollment and verification. These modes operate analo
gously to those described for the Daugman system. Both 
of these modes require approximately IO s to complete. 
A significant speed-up of execution should be possible, 
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however, via optimization of the image-analysis software. 
No commercial version of this system is available. 

The Wildes et al. system has not been evaluated to the 
same degree as has the Daugman system. In particular, the 
system has been the subject of one empirical study [52]. 
In this study, a total of 60 different irises were represented 
as derived from 40 persons. For each iris, ten images were 
captured: five at an initial session and five approximately 
one month latter. Of note is the fact that this sample 
included identical twins. Again, the common range of iris 
colors (blue, hazel, green, and brown) were represented. 
This preparation allowed for the same types of comparisons 
as the previously described experiments. There were no 
observed false positives or false negatives in the evaluation 
of this corpus of data. In this case, statistical analysis was 
eschewed owing to the small sample size. At a qualitative 
level, however, the data for authentics and imposters were 
well separated. In subjective reports, operators found the 
system to be unobjectionable. 

Overall, the two iris-recognition systems that are being 
used for illustration have perfonned remarkably well under 
preliminary testing. Given that the experiments were con
ducted on samples on the order of I 02 or less (i.e., number 
of irises in the experiments) from a population on the 
order of 1010 (i.e., total number of human irises), however, 
one must be cautious in the extrapolation of these results. 
Nevertheless, the results speak in favor of iris recognition 
as a promising biometric technology. 

IV. CO!\CLUSION

For at least a century, it has been suggested that the
iris can subserve biometrically based recognition of human 
individuals. Recent efforts in machine vision have yielded 
automated systems that take strides toward realizing this 
potential. As currently instantiated, these systems are rel
atively compact and efficient and have shown promising 
perfonnance in preliminary testing. Extant systems require 
a fair amount of operator participation and work at rather 
close range. Therefore. they are best suited to controlled 
assessment scenarios (e.g .. portal entry and the like). 

The notion that the iris is a useful biometric for recog
nition stems largely from anecdotal clinical and indirect 
developmental evidence. This body of evidence suggests 
that the structure of individual irises is highly distinctive 
and stable with age. Empirical testing of documented iris
recognition systems provide additional support for these 
claims: however. these tests were limited in scope. An 
important direction for future efforts is the design and exe
cution of controlled. large-scale. longitudinal studies. Only 
via reference to such studies can the true accuracy of iris 
recognition be detennined for both the verification and iden
tification tasks. Another potentially rich direction for future 
research would be to relax the constraints under which 
current iris-recognition systems operate. In this regard, it 
would be particularly desirable to decrease the required 
level of operator participation even while increasing the 
physical distance from which evaluation takes place. If such 
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goals can be achieved, then iris recognition can provide the 
basis for truly noninvasive biometric assessment. Further, if 
these enhancements can be had while maintaining compact, 
efficient, and low-cost implementations, then iris recogni
tion will be well positioned for widespread deployment. 
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